- 34 -

维普资讯 http://www.cqvip.com

1995 年第 3 期

马 钢 科

炉外精炼钢包用耐火材料

TF769.2 TF748.05 吴靖斌 (非金属材料研究室)

1 前言

炉外精炼原先是用于特殊钢冶炼,近几 年,对普通碳素钢也推行炉外精炼。

炉外精炼的作用可分为脱气、脱碳、喷 粉、合金化、均匀温度等。

除 AOD 外,各种精炼工艺均在钢包中 进行,一般称为钢包精炼。

由于钢水要在精炼钢包内完成脱气、排 除杂质、调整成分和温度等冶金任务,延长 了钢水在钢包中的停留时间,使得耐火材料 蚀损明显加剧。钢包内衬寿命的长短,不仅 关系到耐火材料的消耗和成本,而且影响钢 的质量。

70 年代,钢包内衬主要是使用粘土砖 和硅质砖,到七十年代后期,粘土砖和硅质 砖的用量减少,高铝砖的用量增加,并开始 使用碱性耐火材料,80年代以后,粘土砖和 硅砖的用量大大减少,而碱性耐火材料的用 量明显增长。

炉外精炼钢包用耐火材料

LF、VAD、ASEA—SKF 钢包,使用耐 火材料的情况如下:

①渣线 日本曾经使用过镁铬砖、镁白 云石砖,以后使用镁碳砖,显示最耐侵蚀,寿 命一般为50次。

②侧壁 使用 Al₂O₃ 含量为 75-90% 的烧成或不烧砖,寿命可达 65 次。目前,日 本有使用镁碳砖代替高铝砖的趋势。

③包底 包底通常使用 Al₂O₃ 为 60— 80%的高铝砖,寿命约40次。

西欧、北美钢包炉用的耐火材料情况示 于表 1。

表 1 西欧、北美钢包炉用耐火材料(均为一个厂的资料)

国 名	炉 容		\$P	」 命/中修			
四位	軽	渣	线	侧	壁	底	次
 西德	110	Mg(5–c	Ċ. B	dol -	C. B. dol	4550/1
英 - 国	130	D. I	3. dol	D. B	l dol	D. B. dol	20-30
法 国	105	C. E	3. dol	; C. B	. dol	C. B. dol	30-35
意大利	90	dol	-c	C. I	3dol -	dol-C	40-45
 美 国	70	C. I	3. dol	C. B	. dol	C. B. dol	45

注,C.B.dol 炭结合白云石砖,D.B.dol,直接结合白云石砖;dol-C白云石一炭砖,MgO-C;镁一炭砖。

2.1 钢包渣线用耐火材料

炉外精炼钢包渣线工作衬,世界各国分 别采用直接结合镁铬砖、电熔再结合镁铬砖、 方镁石砖、镁白云石砖和镁炭砖。不烧镁碳砖 (加石墨、C含量 10-20%)取得了良好的使 用寿命。

日本仙台钢铁厂的 LF 精炼钢包渣线, 初期采用镁铬砖,寿命为20-25次;现在采 用 镁 炭 砖 (1400℃下 的 抗 折 强 度 为 10— 14MPa),使渣线寿命提高到 40 次。

新日铁姬路钢铁厂在 80t 的 LF 精炼钢 包进行了镁炭砖的试验,寿命达到110次,耐 火材料消耗为 3.6kg/t 钢,与渣线为镁碳砖、侧壁为高铝砖的方案相比,寿命提高 80%,耐火材料消耗降低 1.2kg/t 钢,包衬费用降低 22%。所用制品性能示于表 2。

大阪窑业耐火材料公同研究了碳含量、抗氧化剂种类对耐火材料抗氧化、抗渣性和高温抗折强度的影响。结果认为,由电熔氧化镁和烧结氧化镁的混合物,15%的鳞片石墨和添加少量镁铝合金剂抗氧化剂制的镁炭砖,具有最好的指标。日本水岛钢铁厂,研究了镁炭砖的颗粒组成和添加抗氧化剂(Al、Si)数量对镁炭砖抗氧化性的影响,结果表

明·控制抗氧化剂的添加量(特别是 AI)和瘠料细粒化,可以改进镁炭砖的抗氧化性,提高耐用性。增加抗氧化剂的数量、使制品的线膨胀率增加,故添加量必须适宜。

日本东京窑业公司曾在 ASEA—SKF 法钢包上试验了两种直接结合砖,理化性能 见表 2。

在渣线部位寿命:采用 A 砖时,为 10—12次;采用 B 砖时为 15—18次;

高铝砖(Al₂O₃ 为 90%)为 4-5 次; 镁砖(MgO 为 97%)为 3 次; 镁白云石砖(MgO 为 87%)为 7-9 次。

	T-4 H2 N2 I G 1 H 14.	
	A	В
气孔率 %	15.0	16.5
体积密度	3.06	3, 04
吸收率 %	4.9	5.4
假比重	3.60	3, 60
耐压强度 公斤/厘米²	472	455
1450℃抗弯强度 公斤/厘米²	` 25.0	45.0
800で热膨胀率 %	0.84	0.83
2 公斤/厘米² 荷重软化点 T ₂ C	>1650	>1650
透气率 毫克/厘米:• 秒	0.0557	0.0424
<u>透气率 </u>	1. 83	1. 68
Al_2O_3	6. 67	6. 78
Fe ₃ O ₃	3.94	4. 05
Cr_2O_3	10, 18	10. 22
MgO	76. 20	76.16
റൂറ്	โกจร	0 99

表 2 试验砖的物化指标

表 3 镁尖晶石砖的性能

传种		化学成分%				气 孔率	体积 密度	耐压 强度	显比重	1几1丌	1400で 抗折	侵蚀
		MgO	Al ₂ O ₃	Cr ₂ O ₃	Fe ₂ O ₁	% %	g/cm ³	照及 MPa	亚比亚	MPa	强度 MPa	指数
镁尖晶 石砖	Α	89	10	/	/	14.8	3, 06	78	3. 59	16	15. 1	1. 00
	В	92	7	/	/	16.9	289	58	3.56	11	102	0.96
镁铬砖	59	10	19	8	14.9	3. 17	85	3. 74	15	110	1.58	

日本钢管京滨钢铁厂 50t 的 VOD 和 VAD 钢包中,试用了镁尖晶石砖,抗热震性 能好,对含较高 CaO、Al₂O₃ 的脱硫渣抗蚀性 好,与镁铬砖对比,耐用性提高 40—50%。性 能列于表 3。

钢包碱性耐火材料包括镁质和白云石质 两类,从冶金技术角度看,白云石质(包括镁 质白云石)耐火材料,热力学稳定性好,对减 少钢中夹杂·控制硫化物形态等都非常有利·加上价格便宜、资源丰富·将成为当今的宠物,成为世界潮流、看建的小钢厂·90%的钢包采用白云石砖砌衬。

表 4 列出的是沥青结合热处理白云石砖

和烧成白云石砖的主要性能。用于进行喷粉处理的精炼钢包时,寿命为 30—50 次。应该指出,在注入钢水前应加热到 1000 C;停止使用时,必须有隔热耐火材料的顶盖。

一											
		ß	与瓷结合 6	ŧ	沥青结合砖						
-W	Ħ	K11101	K11103	K11123	T11201	T12245	T00705	G00710			
化学组成		1.9	1.9	1. 7	1.9	1.7	1. 9	1.9			
	CaO	59	59	40	59	29	59	59			
%	$_{\rm MgO}$	38	38	58	38	69	38	38			
体积密度	f.g/cm ³	2. 83	2.60	2, 89	2. 95	3.00	2. 88	2.75			
气孔	≰,%	17. 0	23.0	17.0	6.7	7.7	5. 0	5.5			
耐压强	女 · MPa	70	60	70	60	50	50	30			
	20 ℃	21.4	13.1	24.0	65	52.3	10.1	5. 6			
抗折强度	1250℃	20. 5	12.6	20.5	200 € 1.3	1. 2	4.4	3.8			
MPa	1350℃	4.2	3.7	16.4	300 C 1. 1	1.4	2. 0	2. 7			
	1450 ℃	4.2	3.7	2.7	400 C 1. 1	1.0	1. 2	1.7			
	_1500 ℃	4.1	3.4	0.5	500 C 1. 1	1.2	2. 6	1.4			
荷软温度	(Tc). C	1330	1330	1330	1400	1500	1360	1360			
膨胀率()	艮大)、% (1.6	1.6	1.7	0.6	0.75	0.07	0.21			
	收缩率(~1500で),%;		0.8	0, 08	0.15	_	0.32	0.17			
热稳定		12	14	8	—	_	_	—			
导热率(900	C).W/mk	2.7	2.5	3. 0	8.•3	8. 0	10.0	15.6			
残碳量(1000	<u>C</u> 焦化ルタ				2.5	2. 6	4. 9	8.0			

表 4 沥青结合热处理白云石砖和烧成白云石砖的性能

表 5 各国精炼钢包炉用白云石砖的性抟

国 别	美	国	英国	 <u>a</u>	西	德	日	本	中国
砖 类	普通 烧成	高密度	轻 烧 焦油砖	烧成	高温 烧成	高温 烧成	1	2	烧成 油浸
MgO	38. 3	40.0	40.6	41.1	38. 2	55.8	51. 7	78. 4	80. 2
CaO	58.8	57.0	56.0	56.6	59. 2	40. 1	45.5	19.5	14.86
Al_2O_3	0.46	0.47	0.40	0.3		_	0.2	0.1	0.45
Fe_2O_3	0, 61	0, 56	1.8	1.0	0.8	1.7	1.7	0.7	1. 98
SiO_2	1.08	1.00	1.1	0.9			0. 7	0.9	1. 62
显气孔率%	1, 95	9. 5	5.0	16.8	15	16	13, 1	12.4	13
体积密度 g/cm³	2. 65	3. 0	2. 90	2.86	_	_	2, 96	3.06	3. 02
常温耐压强度 MPa	49	70	25—45		_	_	60	82	71. 4

1970年前后,日本水岛厂的钢包炉渣线部位,试用过镁质白云石砖(MgO86—89%,CaO7—9%)寿命从原来高铝砖时的4—5次,提高到7—9次。

日本川畸炉材研究所曾用镁质白云石砖

(MgO61.0%,CaO36.0%)及直接结合镁铬 砖进行对比试验,发现采用 MgO80%的高温 烧成镁质白云石砖的效果好,黑崎窑业研究 所的试验也表明,镁白云石砖(MgO78.7%, CaO19.5%)比镁铬砖好,侵蚀速度为 3.31.1mm/炉。寿命可达 44 炉。

德国在 VOD 钢包精炼炉,采用普通的 烧成陶瓷结合的白云石砖(MgO38, 2%, CaO59, 2%)。

表 5 列出了各国炉外精炼用白云石质耐 火材料的性质。

我国炉外精炼钢包渣线,一般采用电熔

再结合镁铬砖、电熔半再结合镁铬砖、全合成 镁铬砖、电熔再结合镁铬铝砖。

大连钢厂在 13t 的 VOD 精炼钢包渣线, 用全合成镁铬砖,寿命为 18—21 次,采用全 合成镁铬铝砖,最高寿命为 22 次。理化性能 列于表 6。

品 种	高强度	镁碳砖	电烙再结	全合成	全合成	半再结合	半再结合	烧成油浸镁
	镁磷砖		合镁铬砖	镁铬砖	镁铬铝砖	镁铬砖	镁铅砖	白云石砖
MgŌ, %	77.6	75.1	66. 3	62.6	5B. ()	61.9	77.9	70-74
CaO.%	-	_	0.74	U. 77	0.9	1.28	_	19-22
Cr ₂ O₁, %) — '	_	21. J	15.3	15, 5	14.8) —	_
S_1O_2 , $\frac{1}{2}$	<u>.</u>	—	2. 70	3.25	2. 25	3.75	2.3	Σ SAF
Al_2O_3 . $\%$	<u> </u>	_	_	11.2	17.2	11.5	<u> </u>	≤4
C.%	13.8	11.5	-		l —	[—	_	<u> </u>
显气孔率,%	3-6	10. B	17. 9	16.7	13	13	17-18	€૩
体积密度。g/cm	2.80-2.85	_	3.12	3.12	3. 21	3. 25	3.01-3.04	ľ
常温耐压 MPa	33.5-46.9	30.5	58. 2	52.3	69.9	26.0	51.5—66.B	≥70
1400 C抗折强度 MPa	13-15	6. 9	8.0(1500 C)	10.2	_	4.9	6.6-23.2	l I
荷重软化点・で	_	1860	1740	1640	171U	16 10	≥1710	≥1700
试用场合		上钢五	太钢	大连钢厂	大连钢厂	武钢	宝钢	太钢
		┌ LF	VOD	VOD	VOD	RH	RH-OB	AOD
		炉渣线	渣 线	査 线	循环管	上升管	炉身	
最高使用寿命(次)		39	1	21	22	20 次左右	28 44	
	_					最高 52		f

表 6 我国研制的精炼炉用耐火材料性能举例

抚顺钢厂在 30t 的 VOD 精炼钢包渣线进行了各种碱性砖的对比试验,结果表明:以高质量全合成镁铬砖和 Cr₂O₃ 含量高的半合成镁铬砖的损失速率为最低,其次为高温烧成镁白云石砖和镁炭砖,而熔粒再结合镁 砖和 SiO₂ 含量高的全合成镁铬砖损坏速率最大。镁炭砖损坏的主要原因是碳的氧化所致。

北京重型机器厂在 ASEA—SKF 钢包 精炼炉的渣线,试用过烧成油浸镁质白云石 砖,17 炉次后的残存厚度仍达 80—90mm, 估计尚能用 4—5 次,而使用英国的镁砖为 8 次,使用日本产的高温烧成镁铬砖为 10—15 次。这种油浸镁质白云石砖在太钢 AOD 炉, 寿命达到 40 次。理化性能见表 6。

上钢五厂在 40t 的 LF 钢包, 渣线使用 电熔再结合镁铬砖(理化性能见表 4), 寿命 为 36 次左右, 镁炭砖为 39 次, VOD 或 VHD 炉用镁炭砖, 寿命达 20 次以上(理化性能见 表 6。

马钢即将投产的 90tLFVD 炉的渣线工作衬用镁钙碳砖,次衬采用镁铬砖。理化性能见表 7。

				_				
碱 K ₂ O Na ₂ O (%)	耐压强度 (MPa)	体 密 (g/cm ³)	碱 k. Na	气孔率 (%)	MgO (%)	CaO (%)	Cr ₂ O ₃ (%)	Al ₂ O ₃ (%)
镁钙碳	15—18	2.8-2.9		36	78.49	3.55		
镁铬	24-31	3.0-3.1		17	65. 69	1.01	17-19	
高铝质	62-64	2.8-2.9	0. 29	16-20	-	6.9	1	86. 73

表 7 马钢 90 吨 LFVD(SKF)炉衬的指标

2.2 钢包渣线以外的耐火材料

炉外精炼钢包渣线以外工作衬,各国大多用 Al₂O₃70%以上的高铝砖。前苏联采用 莫来石一刚玉砖,我国采用一等高铝砖,西欧 和美国用白云石砖代替高铝砖,美国内陆钢 铁公司,在喷吹硅钙粉 110 吨钢包中,用衬脂结合的白云石砖取代 Al₂O₃70%的高铝砖,寿命提高了二倍。研究表明:白云石内衬对精炼过程中采用的还原剂(如 Ca、Al、Si 等)和高碱性渣具有良好的抗侵蚀性能,但对高铁渣不利。

新日铁八幅钢铁厂从 1984 年开始,在 120tLF 精炼钢包侧壁加有碳化硅的方镁石橄 揽 石 碳 质 制 品 (MgO69%,SiO₂13%,C10%,SiC2%)代替高铝砖,蚀损速度降低 30%,耐火材料费用降低 15%。

神户钢铁厂对铝炭砖添加金属,提高砖的残余膨胀率;砖型由普型改为扇型,炉渣中

MgO 含量控制在 10%,寿命提高 20%。

前苏联 N_{*}OPCKIIN 钢厂的 ASEA—SKF 精炼钢包,采用高碱度操作,渣线部位使用进口的低硅镁铬砖,侧壁采用不烧铬镁砖,取得了很好的效果,不仅提高了寿命,而且降低了成本,节省了能源。不烧铬镁砖的性能为:MgO61.57%,Cr₂O₃20.14%,Al₂O₃为1.05%,SiO₂3.3%,CaO2.04%;耐压强度为51.2MPa,显气孔率10.7%,体积密度为3.14g/cm³。

南非某厂 VAD 钢包的沥青结合的低温处理白云石砖添加了某种添加剂,获得最佳的残余线性膨胀率,寿命明显提高,内衬中极少见炉渣反应和渗透。还提示,钢包每冷却到500—800 C一次,使用寿命减少3—4次,而每换渣线一次,寿命将减少8—10次。因此,尽量减少冷却次数,可提高寿命。

品种	高铝砖 (不烧砖)	铝含量居中的 高铝砖 (烧成砖)	碱性砖 (直接结合)	
耐火度 C	1820	1770	1920	
气孔率 %	18. 0	10~15	15~19	
体积密度	2. 80	2.70	3.00~3.15	
耐压强度 公斤/厘米	300~500	350~500	350~600	
2 公斤/厘米 ¹ 荷重软化 T ₂ で	1500	1450 .	1700	
1000℃热膨胀率 %	1, 00	0.8	1.15	
1400で残存线膨胀率 %	+2.0	+1.2	+0.10(6007	
SiO ₂	20.0	47.0	3.0	
Al ₂ O ₁	75.0	50.0	13.0	
化学成分 % Fe ₂ O,	2.0	1.5	6.0	
MgO	- —		60~66	
Cr ₂ O ₃		_	13~17	

表 8 日本住友钢管厂钢包炉砖的性能

日本住友钢管厂自 1972 年以来,采用 VOD 法。

50tVOD 钢包永久衬采用铝含量居中的 · 烧成高铝砖 · 厚 65mm · 采用形状良好的不烧

高铝莫来石砖,受钢水冲击侧下面四层砖的厚度为180mm,沿周围其余部分下两层砖的厚度为150mm,其余砖厚114mm,包底浮起现象严重,由于这种不烧高铝砖,残存膨胀率

非常高(1400℃时为 4%)。后用残存线膨胀 率为 1%的不烧高铝砖,在排渣侧采用铝含 量居中的高铝烧成砖,防止了上述现象发生。

钢包寿命在 46 次左右,采用脱气操作后,寿命下降至 36—38 次,单耗高达 9. 6kg/t 钢,后采取注入钢水前将钢包加热至 800—1000 C 等措施,单耗降至 7.5kg/t 钢。砖的性能见表 9。

3 精炼钢包耐火材料发展方向

目前,日、美与西欧国家,采用的耐火材料有所差异,但不外乎三类:含碳(或碳结合).的 MgO—CaO 系材料;不同生产工艺的MgO—Cr₂O₃—Al₂O₃ 系材料(均要求高度直接结合)和高铝质材料。表9列出了某些耐火材料性能。炉外精炼由于工艺多样,选用耐火材料需因地制宜,并且从制造工艺上予以调整,如:

①镁炭砖,有扩大使用的趋势,但是由于它有易被氧化、高温真空 Ar 气氛下发生氧化一还原反应等弱点,限制了它在某些场合的使用效果,或者在制造工艺上采取改造措施,诸如调整石墨加入量(高铁高氧化性渣时碳含量宜低些,反之可高些),选用适宜的添加剂品种(根据对制品抗氧化性强度、抗渣性等的不同要求)等;

②镁钙碳砖和镁白云石砖,由于镁质材料中引入 CaO 的作用和优越性已被确认,正日益受到重视。如即将投产的马钢 90tLFVD 炉即在渣线部位选用了镁钙炭砖。制品中CaO 含量,应依据炉渣性质等具体情况选定,一般以 10—20%为宜;

③MgO-Cr₂O₃-Al₂O₃ 材料,镁铬砖由于抗低碱度渣能力强等优点,一直是 VOD、AOD 等精炼炉渣线部位传统用砖,特别是采取烧结合和半再结合等先进工艺,或者再引入 Al₂O₃ 制成方镁石——尖晶石复合制品,因其显微结构更为合理,使其抗渣性、高温强

度、抗热震稳定性等更加改善。全合成和半再结合等工艺比较复杂,所以,具有了高纯镁砂、优质铬矿和高烧成直接结合镁铬砖(美国等惯用砖种),也是有现实意义的;

①积极发展碱性不定形材料,现用镁铬 砖内衬损坏主要由于工作面的冲刷磨损产生 结构剥落或裂纹,因而若采用整体性好的不 定形材料可能会有好的效果。近几年来国外 已有这种发展势头,研制了一类低水泥无水 泥结合(自结合)的新型浇注料,材质包括镁 铝质、镁铬质、铝锆质和高铝质。主要工艺环 节是使用适当分散剂和耐火微粉,只添加少 量水分,这种浇注料既有易施工性,又很致 密、高温强度和耐侵蚀性能好。目前国内这方 面研究工作已取得进展,但在精炼炉上推广 应用还未见报道。

洛耐院最新开发的新型高铝尖晶石质钢 包浇注料,其高温性能和使用性能大大优于 传统钢包料,这种浇注料已在各钢厂转炉钢 包上使用。

但整体浇注主要的问题是拆包困难,拆包机机械不配套。

4 结语

在炉外精炼钢包中, 查线工作衬主要采用直接结合镁铬砖、电熔再结合镁铬砖 : 查线以外工作衬主要采用 Al₂O₃ 含量为 70%以上的高铝砖、铝镁碳质不烧砖、铝镁烧注料、白云石质材料。

精炼钢包用耐火材料发展趋势是:

- ①中性、碱性取代硅质、半硅质材料:
- ②整体包衬技术的推广。在我国中小钢包上已经得到推广,正向大、中钢包上发展,实现机械化施工和清包的振动成型浇注整体包,将进一步提高工作效率,提高使用寿命,降低消耗;
- ③不烧砖受到重视。国内曾使用过的不 烧砖为铝镁不烧砖、镁炭砖、铝镁炭砖、

Al₂O₃—SiC—C 不烧砖,白云石不烧砖等一般都较满意。

我国由于传统工艺装备不相适应,一些工艺较复杂(如全合成砖、半再结合砖)的一

时难以推广,以致目前尚有少数钢厂(主要是机械行业),仍需进口一些精炼炉用耐火材料,这就要求我国广大从事耐火材料工作的人员更加努力、奋发图强。

		10		7 1 113 721	7/3.			1174111	1417164		_
国	别	1		日		本			西德	苏	联
砖	种	镁碳砖	镁碳砖	镁碳砖	镁铝砖	镁铬砖	镁铬砖	镁铬砖	镁铬砖	镁铬砖	镁铬砖
牌	号		мстех —С	MCTEN —DHA			———— 品川	播磨	Redex —RCF,	πΙΧ	
Mg).%	72.7	81	77	89	59	72.1	71.6	60.4	61.6	77.0
С,	%	22.0	14	L 9	_	<u> </u>	· —	¦ —		_	. -
SiO	2.%	1.3			_	_	1.05	1. 99	2.34	1. 9	1.7
Al ₂ C)3,%	-	\ <u> </u>	'	10	10	4.5	8.5	5.8	4.8	3.0
Cr;C)1. 1/0	-			_	19	16.8	12.0	21.8	19.4	11.0
Fe_2C) ₃ , ½	-	- ,		_	8	4.69	5. 06	8.94	6. 1	5.0
CaC).%	i — '	_	-	_	<u> </u>	0.92	0.73	1.54	_	_
显气孔	率以	3.4	3. 2	4.0	14.8	14.9	13	18	14.7	14-15	15
体积密度	隻,g/cm³	2.8	2.88	2, 86	3.00	3. 17	3. 29	3. 05	3. 25	-	<u> </u>
耐压强。	度 MPa	3 5. 9	47	39.5	78	85	55.6	45.1	75. 1	43-50	50
抗折强	度 MPa	- 1	17.6	17.6	16	15	—		_	_	_
1400で打	抗折强度	12.0	5.9	13.2	15.1	10.8	5.5	6.8	8. 9		_
M	Pa	,	1450 C	1450 C)					1	· }
荷重软件	化点・で	_			_	-	>1760	>1720	>1720	1620-1670	16401710
使用		日本钢 铁公司 姫路厂 80tLF	cn.	20t ASEA —SKF	滨厂	N管京 50t /VAD	পৌ	武領 I 各耐院部		ASEA— SKF	DH

表 9 国外精炼炉用主要品种的耐火材料性能举例

参考资料

- 1 张原圣孙桂春耐火材料 1988(6)
- 2 邵金顺《我国炉外精炼用耐火材料的 现状与发展问题》
- 3 刘盛秋林育炼《钢包及其精炼用耐火 材料》
- 4 郑安忠耐火材料 1990. (3)
- 5 实用刚守耐火物 1973. No8
- 6 小容良男耐火物 1973No8
- 7 冶金部"连铸钢包衬整体浇注技术 研讨会"资料